Assessment of Body Volume Asymmetry in Healthy Adults via 3D Scanning: Impact on Chest Wall Mobility

Author's Information:

Njoku CO

Department of Anatomy, Ebonyi State University, Abakaliki, Nigeria.

Stewart AD

School of Health Sciences, Robert Gordon University, Aberdeen, UK.

Vol 2 No 09 (2025):VOLUME 02 ISSUE 09 SEPTEMBER 2025

Page No.: 78-85

Abstract:

A symmetrical body with evenly-developed sides may look better, but in order for humans to adapt to his environment, perfect symmetry of right and left sides hardly exists. This study aimed at determining the right and left body volume asymmetry and its impact on chest wall movements during breathing cycle via 3-D scanning. A sample of 121 adults (78 males and 43 females), age 18 – 44 y was recruited for the research. All the participants were scanned using Artec 3-D scanner to determine total, right and left body volumes; and with Hamamatsu 3-D scanner to determine chest wall mobility during breathing cycle after four reflective stickers had been fixed on the participants; two to delineate the end-points of bideltoid breadth, one on the sternum at the level of the third rib and another at the corresponding level in the posterior median furrow, to delineate anterior-posterior diameter. Comparing the right and left body volume, the right volume was significantly greater than the left body volume in both males and females (P<0.05). Relative to end tidal position, the anterior chest made highest vertical movement, followed by the left deltoid, then the right deltoid, with the least at the dorsal surface in inspiration. Durng expiration, the anterior chest, right deltoid and left deltoid displayed a similar downward movement, but the least magnitude was obtained at the back. 3DS has provided an insight that body side volumes can affect upward and downward distances displaced by thoracic wall at different phases of breathing cycle.

KeyWords:

3-D scanning, body asymmetry, body volume, chest wall mobility, breathing cycle

References:

  1. Azevedo, R.R., da Rocha, E.S., Franco, P.S., & Carpes, F.P. (2017). Plantar pressure asymmetry and risk of stress injuries in the foot of young soccer players. Physical Therapy in Sport, 24:39-43.
  2. Burdukiewicz, A., Pietraszewska, J., Andrzejewska, J., Chromik, K., & Stachoń, A. (2020). Asymmetry of musculature and hand grip strength in bodybuilders and martial artists. Int. J. Environ. Res. Public Health, 17, 4695.
  3. Daanen, H.A.M., & Ter Haar, F.B. (2013). 3D whole body scanners revisited. Displays34, 270–275.
  4. Ekrami, O., Claes, P., White, J.D., Zaidi, A.A., Shriver, M.D., & Van Dongen, S. (2018) Measuring asymmetry from high-density 3D surface scans: An application to human faces. PLoS One. 26;13(12): e0207895.
  5. Jones, D. A., Rutherford, 0. M. & Parker, D. F. (1989). Physiological changes in skeletal muscle as a result of strength training. Quarterly Journal of Experimental Physiology, 74, 233-256.
  6. Jones, H.H., Priest, J.D., Hayes, W.C., Tichenor, C.C., & Nagel, D.A. (1977). Humeral hypertrophy in response to exercise. J Bone Joint Surg Am.59(2):204-8. PMID: 845205.
  7. Jones, W. (2023). Significance of Anthropometry and Its Practical Applications in Different Fields. J. Ergon., 13, 1.
  8. Klingenberg, C. P. (2015). Analyzing fluctuating asymmetry with geometric morphometrics: Concepts, methods, and applications. Symmetry, 7(2), 843–934. 
  9. Leinster, S. (1997). Breast asymmetry and phenotypic quality in women. Evolution and Human Behavior. https://doi.org/10.1016/S0162-3095(97)00002-0
  10. Lima-de-Faria, A. (1997). The atomic basis of biological symmetry and periodicity. Biosystems.; 43(2): p. 115–135.
  11. Lin, L.F. & Kulik, J.A. (2002). Social comparison of women's body SatsfactionBasic and Applied Social Psychology, 24: 115-123.
  12. Longman, D., Stock, J.T., & Wells, J.C. (2011). Fluctuating asymmetry as a predictor for rowing ergometer performance. Int J Sports Med 32: 606–610.
  13. Manning, J.T., Koukourakis, K., Brodie, D.A. (1997). Fluctuating asymmetry, metabolic rate and sexual selection in human males. Evol Hum Behav 18: 15–21.
  14. Müller, W., Lohman, T. G., Stewart, A. D., Maughan, R. J., Meyer, N. L., Sardinha, L.B., Kirihennedige, N., Reguant-Closa, A., Risoul-Salas, V., Sundgot-Borgen, J., Ahammer, H., Anderhuber, F., Fürhapter-Rieger, A., Kainz, P., Materna, W., Pilsl, U., Pirstinger, W., & Ackland T. R. (2016). Subcutaneous fat patterning in athletes: selection of appropriate sites and standardisation of a novel ultrasound measurement technique. British Journal of Sports Medicine, 50:45-54.
  15. Murgu A-I. (2006). Fencing. Physical Medicine and Rehabilitation Clinics of North America, 17: 725–736.
  16. Ng, B.K., Hinton, B.J., Fan, B., Kanaya, A.M., & Shepherd, J.A. (2016). Clinical anthropometrics and body composition from 3D whole-body surface scans. Eur. J. Clin. Nutr. , 70, 1265–1270. 
  17. Nozoe, M., Mase, K., Takashima, S., Matsushita, K., Kouyama, Y., Hashizume, H., Kawasaki, Y., Uchiyama, Y., Yamamoto, N., Fukuda, Y., and Domen, K. (2014). Measurements of chest wall volume variation during tidal breathing in the supine and lateral positions in healthy subjects. Respiratory Physiology & Neurobiology, 193:38-42.
  18. Palmer, A.R., & Strobeck, C. (1986). Fluctuating Asymmetry: Measurement, Analysis, Patterns. Annual Review of Ecology and Systematics. 17(1): 391–421.
  19. Rhodes, G., Zebrowitz, L.A., Clark, A., Kalick, S.M., Hightower, A., & McKay, R. (2001). Do facial averageness and symmetry signal health? Evolution and Human Behavior. 22(1):31–46.
  20. Richardson, S.M. & Paxton, S.M. (2010). An evaluation of a body image intervention based on risk factors for body dissatisfaction: a controlled study with adolescent girls. International Journal of eating disorder, 43(2):112-22.
  21. Shambaugh, J. P., Klein, A., & Herbert, J. H. (1991). Structural measures as predictors of injury in basketball players. Medicine and Science in Sports and Exercise, 23(5): 522-527.
  22. Stagi, S., Mulliri, G., Doneddu, A., Ghiani, G., & Marini, E. (2023). Body Composition and Strength Symmetry of Kettlebell Sport Athletes. Biology, 12, 440.
  23. Stewart, A.D., Marfell-Jones, M., Olds, T., & Ridder H. d. (2011). International standards for anthropometric assessment. Lower Hutt, New Zealand: International Society for the Advancement of Kinanthropometry.
  24. Tomkinson GR, Popović N, Martin M. (2003). Bilateral symmetry and the competitive standard attained in elite and sub-elite sport. J Sports Sci.;21(3):201-11.  
  25. Tomkinson, G.R., & Olds, T.S. (2000). Physiological correlates of bilateral symmetry in humans. Int J Sports Med.;21(8):545-50. doi: 10.1055/s-2000-8479. PMID: 11156272.
  26. Trivers, R., Manning, J. T., Thornhill, R., Singh, D., & McGuire, H. (1999). Jamaican symmetry project: Long-term study of fluctuating asymmetry in rural Jamaican children. Human Biology, 71(3): 417-430.
  27. Van Valen L. (1962). A study of fluctuating asymmetry. Evolution 16: 125–142.
  28. Vellody, V.P., Nassery, M., Druz, W.S., & Sharp, J.T. (1978). Effects of body position change on thoracoabdominal motion. Journal of applied physiology respiratory environmental and exercise physiology, 45(4): 581-589.
  29. Verschakelen, J.A., & Demedts, M.G. (1995). Normal thoracoabdominal motions. Influence of sex, age, posture, and breathe size. American Journal of Respiratory and Critical Care Medicine, 151(2 Pt 1): 399 - 405.
  30. Watson, P.J., Thornhill, R. (1994). Fluctuating asymmetry and sexual selection. Trends Ecol Evol 9: 21–25.